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The classIcal method which describes heat conductlon m elongated bodies, e g, fins, IS 
extended to methods of higher order Numerical examples are put forward to show that these 
higher order methods are capable of yleldmg accurate results with relatively httle effort A 
comparison with a classlcal method of the timte-difference variety shows that these methods 
may sometlmes be superior It IS expected that they may be apphed with the same accuracy to 
fields other than heat transfer Fhud mechamcs and elastlclty are hkely candidates. It IS shown 
that higher order tin methods can easily be apphed to nonhnear problems On the other hand, 
a successful apphcatlon of the methods requires smooth boundary condltlons Any feature m 
the problem defimtlon that would lead to local smgulantles, such as sharp corners or abrupt 
changes m the boundary condltlons, renders these methods less effective Therefore, 
paradoxically, these higher order “fin methods” do not lend themselves very well for the 
derlvatlon of more accurate solutions m the case of actual coohng tins Nevertheless, smce the 
methods are based on the orlgmal treatment of heat transfer m fins, and for want of a better 
termmology, It would seem appropriate to call then lin methods ‘(-’ 1988 Academic Press. Inc 

1. INTRODUCTION 

Cooling tins are thin good heat-conducting plates or spines projecting from a 
body which produces large amounts of heat. These fins are used to considerably 
increase the surface of such bodies, without adding greatly to their bulk. In the 
mathematical treatment of the conduction of heat through these tins [l-3] a 
method is used which assumes the temperature to be constant within every cross 
section. This “tin method” involves basically an integration of the heat conduction 
equation across the tin, upon which the heat-transfer function which is valid at the 
outside of the fin can be entered quite naturally. As such, the fin method expresses 
an exact balance between longrtudinal conduction and heat transfer through 
the side walls of the fin. Put in mathematical terms this means a reduction from a 
two-dimensional model to a one-dimensional one, which is a considerable 
simpliticatron. 

The tin method works quite well if the variation of the temperature in the 
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lengthwise direction occurs over distances that are relatively long in comparison 
with the width of the fin. In that case the two-dimensional effects that occur at the 
two ends of the fin are negligible, except, of course, in those cases where an accurate 
description is needed precisely at (one of) these ends [4, 51. Should the longitudinal 
temperature variation become more pronounced, e.g., owing to a more rapid 
variation in heat transfer from the side walls, the original fin method may become 
too inaccurate. In order to preserve the ease of calculation which makes the fin 
method so attractive, it would seem to be worthwhile to see whether it is possible to 
develop higher order fin methods with which we shall be able to handle these more 
extreme cases with some degree of accuracy. 

Another reason why such higher order methods would be a welcome extension of 
the original fin concept is that it is sometimes necessary to know the variation of 
the temperature across the fin. This is not true so much for actual cooling fins, as 
an appreciable variation of the temperature across then would mean a less effective 
performance m relation to their bulk. However, important examples can be found 
m crystal growth. In the so-called Bridgman-Stockbarger technique an elongated, 
often closed, crucible is used to melt and recrystallize a crystal inside. By some 
means heat is injected into the crucible through its outer wall, quite often by a heat 
source of restricted size which surrounds part of the crucible. The heat is conducted 
into the crucible-crystal system and then away from the heat source m the two axial 
directions, before it is transmitted to the surroundings through the crucible walls at 
either side of the heat source. When the crystal is melted, it is often necessary to 
remain within a few degrees of the melting point. However, quite frequently the 
temperature variation from the outer wall to the crystal core is much larger than 
this limited temperature range. Therefore, although they have been proposed here 
too [6], the original fin method would seem to be insufficient for these not-so- 
slender heat-transfer systems. 

Of course, limte-element or finite-difference methods can be applied successfully 
in these more complicated cases. Examples can be found in the crystal-growth 
literature [7]. However, the application of these methods leads to lengthy and 
time-consuming computer codes which are suitable for preliminary m-depth 
investigations into the field. They appear to be less suitable for real-time control of 
an actual crystal-growth system. It is for this reason that we hope to be able to 
develop faster methods based on the fin concept. 

It is the purpose of this paper to investigate the performance of higher order fin 
methods for some simple heat-transfer examples that can also be solved exactly. 
This will enable us to assess their accuracy. However, the applicability seems by no 
means restricted to problems in heat transfer. It seems likely that higher order fin 
methods can be used with success in such diverse fields as fluid mechanics or 
elasticity. On the other hand, it will be clear that the class of methods we present 
here is suitable only for problems which involve smooth geometries and smooth 
boundary conditions. Any irregularities in the field produce local two-dimensional 
effects, very often singularities, which cannot be modeled effectively with the simple 
concepts of the fin methods. What one could do is to consider these irregular 
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behaviors within a framework as put forward in [4]. Outside a limited region 
around an irregular point the field is smooth again, and fin methods will be 
applicable. Within the restrtcted region a full two-dimensional approach is 
necessary. A more comprehensive discussion of this matter IS outside the scope of 
this paper. 

The classical tin is irregular in the above sense, since it features sharp corners 
where It projects from the main body. Therefore, without the special precautions 
mentioned above, the higher order methods proposed here do not seem to work 
very well for actual tins. This circumstance would seem to turn the concept of a 
higher order tin method into something of a misnomer. However, since these 
methods are direct extensions of the original tin method, and for want of a better 
terminology, we nevertheless propose to designate them as such, although theu 
application will be found mainly in other fields. 

2. A HIERARCHY OF FIN METHODS 

An easy way to introduce these methods is to show how they work in the case of 
a simple model example. Let us consider Laplace’s equation 

(1) 

in the domain 0 < x < cc and 0 6 y s 1. Boundary conditions are chosen so that we 
may readily obtain an analytical solution with which to compare our approximate 
results. We have 

aT 
5’0 at y=O 

Jx= --ET+ q(x) 
aY 

at y=l 

dT 
z=O 

at x=0 

(2) 

(4) 

T+O as x+00. (5) 

This system represents heat conduction in a slab with a heat-input function q(x) at 
the boundary y = 0 and linearized heat radiation to the surroundings. For our 
explicit numencai example we shall use a Gaussran distribution 

q(x) = C(‘/2e-ax2 (6) 
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The analytical solution can then easily be obtained by means of the Fourier 
transform 

Zero-Order Fin Method 

In the classical fin-model approach the temperature 
across the slab. Equation (1) 1s then integrated across 
This yields 

2 

g+ ?- Yl 
v=l 

ay J=o = 0. 

(7) 

T is assumed to be constant 
the slab from Jl=O toy= 1. 

(8) 

Together with Eqs. (2) and (3) this yields an equation for a one-dimensional tem- 
perature field: 

d2T -- 
dzc’ 

ET+ a”2epm”2 = 0. 

The solution to this equation which satisfies (4) and (5) is 

e - rC&‘I* + e ce’ 2 )I . (10) 
A zero-order fin model usually gives good results when the variation of the tem- 

perature in the lengthwise direction is moderate. This will be the case when the heat 
source is rather spread out (u. small) and the heat losses to the surroundings are 
relatively small (E small). This is illustrated by Table I which shows some results for 
c( and E both equal to 0.1. The differences between the exact results and the 
approximate ones are only of the order of a few percent. However, when either a or 
E or both become larger, the zero-order fin model is likely to become less effective. 
Consequently, a need for more accurate approximate methods arises. 

Higher-Order Fin Method 

Instead of assuming the temperature to be constant across the slab, we shall 
assume that it may be written as 

T= f a,(x)y2”, 

where N is an integer that determines the order of the approximation. The odd 
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TABLE I 

Performance of Zero-Order Fm Method for a = E = 0.1 

x Fm method Exact (y=O) Exact (J’ = 1) 

0 11255 16866 17551 
I 16556 16216 16194 
2 14680 14462 14782 
3 12153 1.2073 12118 
4 0 9539 0 9566 0 9424 
5 0 1220 0 7307 0 7089 
6 0 5350 0 5457 0 5241 
I 0 3924 0 4029 0 3849 
8 0 2865 0 2960 02821 
9 0 2089 02170 0 2067 

10 0 1523 0 1590 0 1514 

powers of y have been left out because of Eq. (2). Now we derive a set of ordinary 
differential equations and one algebraic equation for the functions a,(x). First, we 
have from (3) and (11) 

(12) 

N more equations are obtamed when we integrate Eq. (1) up to N times across the 
slab in the following way 

(13) 

using Eq. (11). This yields N second-order differential equations 

=o (i= 1, 2, . . . . N). (14) 

The boundary conditions are 

da,_0 
dx 

at x=0 for n =O, 1, . . . . N (15) 

and 

a, + 0 when x + co for n = 0, 1, . . . . N. (16) 

Of course, these conditions have to be compatible with Eq. (12), which demands 

q’(0) = 0 and q(co)=O. (17) 
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We shall illustrate the effectiveness of the higher order methods by referring to 
our earlier example with q(x) as given by Eq. (6). The first-order method involves 
the equation 

d2ao 1 d*a, 
dx* +7 dx* 

-+2a,=O 

and 

(19) 

subject to the boundary conditions (15) and (16) for n = 0 and n = 1. The solution 
for a, can be expressed as 

a 1 cx) = E 71 112~0~14a 4 [cux{ -erfc( - &)-erfc(&) 

+ erfc 
( 

~a’/* -&)}-Perfc(xci1~2+&)]+ye~“2, 

where 

and 
3 

I’ = 2(3 + E) . (21) 

From (19) and (20) an expression for a,,(x) may easily be derived, so that we can 
evaluate the temperature 

T= so(x) + a,(x) y*. (22) 

The second-order model may be treated in exactly the same way, and an 
analytical solution may be found. It involves a little more algebra which we shall 
not present here in detail. Anyhow, in the application of the method to practical 
problems the ensuing system of differential equations cannot in general be solved 
analytically, and we shall have to resort to numerical integration. 

For c1= E = 1 the second-order method means a considerable improvement upon 
the zero-order fin method. This is indicated by the results of Table II which 
demonstrate that the second-order method is very accurate across the board. We 
show in Table III how the methods perform for various values of c1 and E. The 
values given in the table refer to the temperatures at (x, y) = (0,O) and (x, y) = 
(0, l), respectively. For all cases the approximate results seem to approach the exact 
values when methods of higher order are selected. Even in the case 01= 10, E = 10, 
which means an extremely narrow heat source and very efficient heat transfer, both 
of which conditions are conducive to a rapid longitudinal temperature variation, 
the second-order method leads to a relatively good approximation. Although no 
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TABLE II 

Comparison of Zero-, First-, and Second-Order Fm Methods with 
Exact Solutlon for a = 1 and E = 1 

?‘=o J’=l 

, 0 I 2 Exact 0 I 2 Exact 

00 05456 04377 04552 04549 05456 06251 06139 06135 
05 04921 04160 04241 04241 04927 05370 05328 05327 
10 03707 03524 03470 03412 03707 03576 03627 03629 
15 0.2459 02642 02564 02565 02459 0.2113 0.2166 02166 
20 0 1531 0 1812 01773 01772 01531 01269 01285 01284 
25 00933 01192 0 1181 0.1181 00933 00801 00191 00797 
3.0 00567 00775 00775 00174 00567 00517 00510 00510 

proof is presented here, it would seem that choosing methods of ever-increasing 
order, we may indeed obtain results that actually converge to the exact values. 

Comparison with the Method of Lines 

As explained in [S, Section 6.71, the method of lines also aims at reducing the 
dtmensionality of a given boundary-value problem and solve tt numerically. It does 
so by replacing the derivatives with respect to one of the coordinates by finite 
differences. A differential equation such as ( 1) is then replaced by a set of ordinary 
differential equations. In the model problem presented here the derivative to be 
replaced by finite differences would be a*T/c?y*. To arrive at a system of the same 
complexity as our higher order tin model we need to cover the y interval [0, l] by n 
mesh points. In addition to these, two virtual mesh points will have to be 
considered outside the interval at either side 

In order to be able to compare this method with ours, we shall present the 
system that corresponds with the second-order fin model which involves two linear 

TABLE III 

Comparison of Zero-, First-, and Second-Order Fm Methods with 
Exact Solutions for Various t( and& 

y=o J:=l 

a E 0 1 2 Exact 0 1 2 Exact 

1 03 12183 10777 11006 1.1001 12183 13719 13515 13510 
I3 02390 01710 0.1815 0.1813 02390 0.2684 02644 02643 

03 1 04011 03567 03599 03599 0.4011 04204 0.4189 0.4189 
3 1 06580 04486 05121 05095 06580 08764 08265 0.8234 
10 1 07479 0.3494 05529 05379 01479 1 2870 1 1071 10851 
10 10 0.1725 0.0233 0.0836 00775 01725 02674 02417 0.2433 
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second-order differential equations. To arrive at a system of only two differential 
equations when applying the method of lines, we can admit only two regular mesh 
points, viz. at )’ = 0 and y = 1, and two virtual mesh points at y = -1 and y = 2. In 
addition to the two difference-differential equations obtained from Eq. (1) - 

Td'+T,-2T()+T-,=o, T;'+ Tz-2T,+ T,=O, 

we have two difference equations that result from Eqs. (2) and (3) 

2Tp,+3To-6T,+T,=O 

Eliminating T-, and T, from (23), (24), and (25) we obtain finally 

T6'=6T,-(6+2~)T,+2a"~e-"~ 

T;'= -6T,+(6+4~)T,-4cr"~e~"'*. 

These equations will have to be solved subject to the boundary conditions 

T;(O)= T,'= T,,(a)= T,(co)=O. 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

The performance of the two methods is illustrated by Table IV. Clearly, the 
second-order fin method is superior for all values of a and E presented. The results 
obtained by the method of lines are poor in comparison, given the same complexity 
of the two systems. Obviously, many more mesh points will be needed for the 
method of lines to yield results that are of comparable accuracy. But this would 
lead to an extra second-order ordinary differential equation for each additional 
mesh point, reducing the efftciency of the numerics. This is an illustration of the fact 
that higher order fin methods are likely to produce much faster computer codes 
than finite-difference methods of equal accuracy. 

TABLE IV 

Comparkson of the Method of Lines with the Second-Order Fm Method 
(Numbers Given Are for x = 0) 

a E Y Method of lmes Exact Second-order tin 

0.3 0.3 0 0 9206 0.9341 0 9342 
0.3 0.3 1 1.0311 1.0432 1.0432 

1 1 0 0 4320 0 4549 0 4552 
1 1 1 0 5957 06135 0.6139 
3 3 0 0 1773 02101 02119 
3 3 1 0 3706 0.3928 0 3944 
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3. EXTENSION TO HIGHER DIMENSIONS 

To show that the method works equally well for problems of higher dimen- 
sionality, let us consider 

(29) 

and describe time-dependent diffusion in a slab 0 d y < 1. At t = 0 we have T= 0 
everywhere m - cc < x < KI, 0 < y < 1. For t > 0 we consider the boundary 
condition 

ar l/2 -0L’cz 

6=” e . 
(30) 

Furthermore, we have aT/ay = 0 at y = 0. 
The solution to this problem can be derived by a combination of Laplace and 

Fourier transforms. Omitting details of the dertvation, we have 

(31) 

Let us see how accurately the second-order fin method is able to approximate the 
values produced by thus exact solution. The second-order fin method assumes 

T=a,(x, t)+a,(x, t)y’+a,(.u, t)y4. (32) 

Substituting (32) in (29) and evaluating the following integrals 

I 
I 
Dt T) & and I s ’ dy ’ D( 0 & 

0 0 0 
(33) 

we obtain 

and 

M(a,) + $4(a,) + fM(u,) = 2a, + 4a2 (34) 

M(u0) + @f(q) + EM = 2u, + 2u,, (35) 

where 

zkqu)=&$ (36) 
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The boundary condition at y = 1 yields 

2~,+4a,=cr”~eP“. (37) 

The initial and boundary conditions read 

t=0:u0=a,=a2=0 (38) 

t>O:u,+O,u,+O,u~+O when x+ f~. (39) 

Using (37) we may recast the system of differential equations (34)-(35) into 
diagonal form 

Mao) =fo(~o~ a,, x)7 W~,)=f,(~o, a17 XL (40) 

which can easily be solved numerically by means of a tri-diagonal matrix operation. 
However, in this particular case it is also possible to find an analytic solution. 
Using the Laplace transform we obtain 

u,=-@-“‘2 %= 7 112{e~10iF(~+~,x)-F(~,~)} 
i&++G(&) 
5 u2=-a’12e-“‘= 
12 +i7 

5 ~JQ{~-~~~F(~+-!-,x)-F(-!-,x)}, (42) 

where 

F(P, xl = 

and 
112 

G( p, x) = p li2e ~ ‘2’4p - v x erfc . 

(43) 

(44) 

Some numerical results are listed in Tables Va,b. They refer to x = 0, where the 
deviations of the fin method from the exact solution (31) are probably largest. 
Nevertheless, even these results are seen to be very accurate. This shows again that 
higher-order tin methods may be powerful alternatives for such well-known 
methods as the finite-element method or the finite-difference method. The latter two 
methods are known to become progressively more time consuming when applied to 
problems of higher dimensionality. 
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TABLE Va 

Exact Solution of Problem of Sectlon 3 (x = 0) 

\ 
‘\ I \ 

‘\ 
) 01 02 04 10 20 100 

00 00052 0 0483 0 1678 0 4775 0 8595 25611 
02 00117 0 0608 0 1831 0 4931 08751 2 5767 
04 0 0346 0 1004 0 2300 0 5410 0 9230 2 6246 
06 00837 0 1725 03121 0 6244 1.0064 2.7080 
08 0 1755 0 2860 04351 0 7487 1 1307 2 8323 
10 0 3332 0 4538 0 6073 09215 1 3034 3 0050 

TABLE Vb 

Results of Second-Order Fm Method Applied to Problem of Sectlon 3 (X = 0) 

\ 

‘\ ’ 
?’ 1, 01 02 04 10 20 100 

00 0.0069 0 0489 0.1675 0 4770 0 8590 2 5605 
02 0.0124 00612 0 1829 0 4929 0.8748 2 5164 
04 0 0332 01000 0 2302 0 5413 0 9233 2 6248 
06 00815 0 1718 03125 0 6250 10069 2 7085 
08 0 1759 0 2860 04351 0 7487 1 1307 2 8323 
10 0 3365 0 4544 0 6067 0 9208 1 3028 30043 

4. A FLUID-MECHANICAL EXAMPLE 

Let us consider creeping flow though a straight infinitely long channel with a 
normalized width equal to unity. Fluid is injected mto the channel through one of 
its side walls, To simplify the analysis, we shall assume the injectron distributton to 
be Gaussian. An equal amount of fluid leaves the channel through the same side 
wall, but at a different location. Therefore, there 1s no fluid motion at infinity. In 
terms of the stream function we define the problem as follows: 

AA$=O (-c0<.x<00,0~J’~1) 

*=o and *,=o at y=O 

ti,=O at ~=l 
I(lx=e-“+‘?--e-“-“‘~ 

cl/-+0 when X+ -a or .K+ic’. 

(45) 

(46) 

(47) 

(48 1 

(49 1 
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In view of (46) we shall write the stream function as 

II/ = Y2 f a,,(x)I’“7 
,I =o 

(50) 

where the functions a,(x) are to be determined by the fin method. We have from 
(47) and (48) 

N 

c (n+2)a,=O (51) 
rr = 0 

and 

,~o,:=e-~,+~,2-e-,~-~12. (52) 

Besides these two equations we need N- 1 additional equations to be able to deter- 
mme the unknown functions a,(x). These are obtained through multiple 
integrations of the kind discussed before. These lead to 

Clearly, the method is only meaningful if N is at least equal to two. The boundary 
conditions for the functions a,(x) follow directly from Eqs. (49) and (50) 

a, -+o when x + -co or x -+ UJ. (54) 

In general, a system of equations such as (51)-( 54) wrll have to be solved 
numerrcally by means of a shooting method or by direct discretization. However, 
the particular system (51)-(54) can be solved more easily by the application of the 
Fourier transform 

This leads to 

A,(o) = Jm eiw”a,(x) dx. 
-a2 

n~o~.+2)an=o 

(55) 

(56) 

,,fo A, = 2,+‘2e-“2/‘4 siycI (57) 

A,-2c02 f (2n+l)! A,+ $ (2n + l)! 

n=, (2n+i- l)! ,,=2(Zn+An=o 

(i= 1, 2, . . . . N- 1). (58) 
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For each given value of N, Eqs. (56)-(58) constitute a set of exactly N algebraic 
equations for the transformed variables A,. This set may be solved, and the A, may 
be transformed backwards to produce the functions a,(x) 

For N= 2 we find 

a - Q,(X) 2 I 180 6w2 + b4 2 pcol 4 sin OGI 
7rLJ2 0 240 + 8~0’ + Go4 e 

cos ox do 
3 w 

a,(x) = 2n’,*{2 -erfc(cl- 2) -erfc(cr + 2)} -24(x) (61) 

u2(x) = -&)(x) - $I*(.~). (62) 

The integral occurring in (60) can be solved rapidly by means of some numerical 
quadrature. 

TABLE VI 

PosItIon of Central Streamhne as Calculated by a 
SuccessIon of Higher Order Fm Methods 

x N=2 N=3 N=4 N=5 

0000 0 56946324 0 56888542 0 56887509 0 56887565 
0100 0 57137792 0 57080810 0 57079605 0.57079657 
0200 0 57720629 0 57666090 0 57664404 0 57664444 
0300 0 58721395 0.58671050 0 58668675 0 58668693 
0400 0 60188985 0 60144708 0 60141592 060141580 
0500 0 62203563 0 62167280 062163573 062163525 
0600 0 64894864 0 64868348 064864421 0.64864335 
0700 0 68482880 0 68467348 0 68463775 0 68463662 
0800 0 73386264 0 73381642 0.73379113 0 73378994 
0900 0 80632925 0 80636448 0 80635524 0 80635439 
0 920 0 82599725 082604110 0 82603522 0.80603449 
0 940 084875915 0 84880739 0 84880464 0.84880405 
0 960 0.87622929 0 87627632 0.87627624 0.87627580 
0 970 0 89277965 0 89282326 0 89282421 0 89282385 
0 980 091251596 091255352 0 91255518 0.91255492 
0 990 0 93830268 0.93833013 0 93833195 0 93833179 
0 992 0 94487080 0.94489542 094489717 0 94489703 
0 994 0 95231772 0 95233904 0 95234067 0 95234055 
0 996 096113499 096115235 096115377 0 96115367 
0 998 0.97259005 0 97260223 0 97260329 0 97260323 

Note Problem IS symmetm about x =O. 
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Clearly, when N becomes larger, the algebra becomes more awkward. The 
explicit solution of the functions A,(x) as functions of o becomes cumbersome. Of 
course, formula-manipulation routines such as REDUCE or MACSYMA may be 
of help here. We have found that solving the algebraic equations for each value of w 
required by the numerical mtegration routine is also an efficient and easy-to-apply 
way of solving the higher order problems. 

Results are shown in Table VI for N = 2, 3, 4, 5. The numbers m the table refer to 
the position of the streamline which runs between the centers of the source and the 
drain. We may conclude from these results that the higher order fin method is very 
effective in fluid mechanics also. By the same token applications in elasticity can be 
envisaged. It is reasonable to assume that the method can be applied to more 
challenging fluid-mechanical problems, such as the flow through a continuously 
expanding or contracting conduit. However, such an application seems to be out- 
side the scope of the present paper which aimed at presentmg some initial ideas 
only. 

5. A NONLINEAR EXAMPLE 

The examples we presented up to now were all linear. However, the fin-model 
concept can also be applied to nonlinear problems. Indeed, it is precisely here that 
we expect these methods to be of great help. Whereas the linear problems that we 
put forward could all be solved analytically, nonlinear problem do not easily 
produce analytical solutions. Therefore, we shall give a nonlinear example for which 
an analytical solution can be obtained artificially. 

Let us consider the heat-transfer problem of Section 2. However, instead of the 
linear radiation boundary condition (3) we use 

2= --E(T+ T4)+q(x). 
ay 

(63) 

The function q(x) still remains to be selected. The solution to our problem shall be 
given by Eq. (7) with tl= 1. Let us denote this function by f(x, y). The function 
f(x, y) satisfies Eqs. (l), (2), (4), and (5). For it to satisfy Eq. (63), we must have 

4(x) = 40(x) + -5f4(4 1 ), (64) 

where qo(x) is given by Eq. (6) with CI = 1. 

Zero-Order Fin Method 

The requisite equation follows immediately from Eqs. (8) and (63): 

$-r(r+ T4) = -q. (65) 

The boundary conditions are those given by Eqs. (4) and (5). 
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First-Order Fin Method 

Next we write T=a,(x) +a,(x)~?~. Using (12) and (13) we obtain Eq. (18) and 

2a,+E{a,+a,+(u,+u,)4}=q(.Y) (66) 

with boundary conditions as given by Eqs. (15) and (16). Wrttmg 

A,=u,+u,, A, =a,, (67) 

and substitutmg this m the requisite equations, we may eliminate A and obtain a 
differential equation involving the function A only: 

The boundary conditions are 

dAo d.u=O at x=0, A,,+0 when x + CC (69) 

Second-Order Fm Method 

We shall carry our analysis one step further by writing 

T= u,(x) + al(x) y2 + u2(x) y4. 

Introducing 

A, = a, + a, + a,, A,=a,, Az=a2, 

(70) 

(71) 

we may carry out an elimination process such as that presented above for the first- 
order case. This results m 

;++(l +4A,3 Ao+;A;-2(Ao+$} 

+ ;$-;q+4A, 

d2A, 15 -- 
dx2 -4 

+ ~{!$(Ao~~-Ao-A:}+q-f$]. 

(72) 

(73) 

Of course, by differentiating (72) twice with respect to X, we may substitute Eq. (73) 

581 76 I-2 
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TABLE VII 

Temperature at Selected LocatIons m the Plane y = 1 as Determined by the 
Nonlinear Problem of Sectlon 5 (E = 1) 

Order of fin method 

r 0 1 2 Exact 

00 0 5597 06218 06138 06135 
05 0.5037 0 5355 0 5327 0 5327 
10 0.3770 0.3573 0 3627 0 3629 
15 0.2494 02110 0 2166 0 2166 
20 0.1552 0 1267 0 1285 0.1284 
25 0.0946 0 0800 0 0797 0 0797 
30 0 0574 00516 00510 00510 

and arrive at a fourth-order differential equation for A,. The boundary conditions 
are 

dAo 0 dA, -= 
dx 

and 
x=O 

at x=0 

Results 

A,-+0 and A,+0 when X-CD. (75) 

The results collected in Table VII show that fin methods also work satisfactorily 
when they are applied to nonlinear problems. Indeed, comparing these results with 
those listed in the right-hand section of Table II, we notice that the performance of 
the methods is as good as for the linear case. 

6. CONCLUDING REMARKS 

In this paper we have extended the traditional fin-method approach to higher 
order fin methods. It was shown that the method can easily be applied to problems 
mvolving more than two independent variables. It can also readily be envisaged 
that problems involving more than one dependent variable will be equally suitable 
for treatment by higher order fin methods. The numerical examples show that tin 
methods of second order already are capable of producing results that are accurate, 
even in those cases where the field variable varies rapidly. 

Although fin methods were originally designed to deal with heat-transfer 
problems, the nature of the method does not seem to preclude application in fields 
that are quite different from heat transfer. For instance, low-Reynolds-number flow 
m a not-so-slowly expanding or contracting conduit seems to be an example where 
these higher order fin methods may yield good results at a relatively low cost. 
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In the examples that we showed, the boundary conditions (e.g., heat-input 
function q(x)) were smooth. No doubt, the excellent performance of the method has 
to be attributed to these smooth boundary conditions. It is to be expected that the 
method will work less well when the boundary conditions change abruptly, and 
particularly in the neighborhood of these discontinuities. The assumption that a 
truncated Taylor-series expansion in J (Eq. (11)) is able to model the field is 
obviously at variance with reality in those cases. It can be expected, however, that 
at some distance from these discontinuities the accuracy of the method will 
improve. 

It should be realized that the methods proposed here do not merely entail the 
substitution of a truncated series expansion in all constituent elements of the 
problem at hand. Such an approach would require a grouping of like powers of the 
expansion variable. This would necessarily lead to the dropping of entered terms at 
the higher end. It is expected that this will affect the accuracy of the solution, par- 
ticularly in the case of nonlinear problems, where higher order terms that do not 
appear in the truncated series may crop up after substitution. Our multiple-integral 
rule, e.g., Eq. (13), ensures that these terms, which would otherwise not be counted, 
remam an integral part of the solution. 

Most of the examples given in this paper were linear boundary-value problems. 
The reason for this was, of course, that m these cases analytical solutions could 
easily be found which would serve as test cases for our numerical procedures. 
However, there is no reason to believe that higher order tin methods will perform 
less efficiently for nonlinear problems. Results we obtained for a nonlinear example 
support this belief. The only requirement for these methods to be useful tools is that 
the field variable(s) should be (a) reasonably smooth function(s) of the independent 
variables. As such, higher order fin methods can be considered as easy-to-use alter- 
natives for Galerkm or Rayleigh-Rttz methods. 

Finally, methods such as the ones presented here are reminiscent of methods that 
were already proposed in the pre-computer days, particularly in the Russian sphere 
of thought. The book by Holt [S], which we mentioned already, strongly advocates 
these methods and shows that they may produce accurate results. Fin methods 
are also akin to the method of weighted restduals discussed in [9]. In that book 
the basic functions are forced to satisfy the boundary conditions. Fin methods 
seem to work very well with the simplest of basic functions (powers) and add an 
equation such as (12) to take care of the boundary condition(s). What all these 
methods seem to show is that very often it is quite unnecessary to apply involved 
lirnte-difference or finite-element schemes to problems that can be solved equally 
accurately at a much reduced cost Moreover, many of the geometries with sharp 
corners, where these methods are less efficient, are undesirable from a technological 
point of view, particularly in fluid mechanics and elasticity. These sharp features 
produce either unwanted eddies or much mcreased local stress levels. 



18 H. K. KUIKEN 

ACKNOWLEDGMENT 

Thus work was carned out whde the author was seconded to Phthps Laboratorres m Brrarchff Manor 
It IS a pleasure to acknowledge the pleasant atmosphere at thts tine facthty wrthm the Phtlips worldwide 
research orgamzatton 

REFERENCES 

1. D Q KERN AND A D KRAUS, Extended Surface Heat Transfer (McGraw-Hdl, New York, 1972) 
2 A AZIZ AND T Y NA, Perturbation Methods m Heat Transfer (Hemrsphere, Washmgton, 1984) 

pp. 14, 44, 140 
3 F M WHITE, Heat Transfer (Addrson-Wesley, Readmg, Ma, 1984). p 70 
4. H. K KUIKEN, J Eng. Math 13, 97 (1979). 
5. H K KLJIKEN AND P. J ROKSNOER, J Cryst. Growth 41, 29 (1979) 
6 T JASINSKI, W M ROH~ENOW, AND A F Wrrr, J. Cryst Growth 61, 339 (1983) 
7 C E CHANG AND W R WILCOX, J Cryst. Growth 21, 135 (1974). 
8 M HOLT, Numerical Methods m Flutd Dynamtcs (Sprmger, Berhn, 1977), pp 1, 212 
9 B A FINLAYSON, The Method of Werghted Residuals and Varratlonal Prmclples (Academic Press, 

New York, 1972) pt. I. 


